A Hybrid Mean Value Involving Dedekind Sums and the General Exponential Sums
نویسندگان
چکیده
The main purpose of this paper is using the analytic method, A. Weil's classical work for the upper bound estimate of the general exponential sums, and the properties of Gauss sums to study the hybrid mean value problem involving Dedekind sums and the general exponential sums and give a sharp asymptotic formula for it.
منابع مشابه
A hybrid mean value involving a new Gauss sums and Dedekind sums
In this paper, we introduce a new sum analogous to Gauss sum, then we use the properties of the classical Gauss sums and analytic method to study the hybrid mean value problem involving this new sums and Dedekind sums, and give an interesting identity for it.
متن کاملOn the General Dedekind Sums and Two-Term Exponential Sums
We use the analytic methods and the properties of Gauss sums to study the computational problem of one kind hybrid mean value involving the general Dedekind sums and the two-term exponential sums, and give an interesting computational formula for it.
متن کاملFractional parts of Dedekind sums
Using a recent improvement by Bettin and Chandee to a bound of Duke, Friedlander and Iwaniec (1997) on double exponential sums with Kloosterman fractions, we establish a uniformity of distribution result for the fractional parts of Dedekind sums s(m,n) with m and n running over rather general sets. Our result extends earlier work of Myerson (1988) and Vardi (1987). Using different techniques, w...
متن کاملOn the Spectrum of the Metaplectic Group
The subject of this thesis is the theory of nonholomorphic modular forms of non-integral weight, and its applications to arithmetical functions involving Dedekind sums and Kloosterman sums. As was discovered by Andre Weil, automorphic forms of non-integral weight correspond to invariant funtions on Metaplectic groups. We thus give an explicit description of Meptaplectic groups corresponding to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014